Takens, F. (1981),
``Detecting strange attractors in turbulence'',
in Dynamical Systems and Turbulence, eds. Rand, D.A.
& Young, L.-S. , Berlin, Springer, pp.366-381.
Stark, J., D.S. Broomhead, M.E. Davies, J. Huke (1996),
``Takens embedding theorems for forced and stochastic
systems'',
in: Proceedings of the 2nd World Congress of Nonlinear
Analysts, Athens, greece, July 1996.
Buzug, Th., T. Reimers, G. Pfister (1990),
``Optimal reconstruction of strange Attractors from
purely geometrical arguments'',
Europhys. Lett., 13, pp.605-610.
Buzug, Th., G. Pfister (1992),
``Optimal delay time and embedding dimension for delay-time
coordinates by analysis of the global static and local
dynamical behavior of strange attractors'',
Phys. Rev. A, 45, pp.7073-7084.
Gao, J., Z. Zheng (1994).
``Direct dynamical test for deterministic chaos and optimal
embedding of a chaotic time series'',
Phys. Rev. E, 49, pp.3807-3814.
Huerta, R., C. Santa Cruz, J.R. Dorronsore, V. Lòpez (1995),
``Local state-space reconstruction using averaged scalar
products of dynamical-system flow vectors'',
Europhys. Lett., 29, pp.13-18.
Liebert, W., K. Pawelzik, H.G. Schuster (1991),
``Optimal embeddings of chaotic attractors from topological
considerations'',
Europhys. Lett., 14, pp.521-526.
Kennel, M.B., R. Brown, H.D.I. Abarbanel (1992),
``Determining embedding dimension for phase-space reconstruction
using a geometrical construction'',
Phys. Rev. A, 45, pp.3403-3411.
Frazer, A.M. (1989),
``Reconstructing attractors from scalar time series:
a comparison of singular system and redundancy criteria'',
Physica D, 34, pp.391-404.
Martinerie, J.M., A.M. Albano, A.I. Mees, P.E. Rapp (1992),
``Mutual information, strange attractors, and the optimal
estimation of dimension'',
Phys. Rev. A, 45, pp.7058-7064.
Kantz, H., T. Schreiber, I. Hoffmann, T. Buzug, G. Pfister,
C.G. Flepp, J. Simonet, R. Badii, E. Brun (1993),
``Nonlinear noise reduction: A case study on experimental data'',
Phys. Rev. E, 48, pp.1529-1538.
Theiler, J., B. Galdrikian, A. Longtin, S. Eubank,
J.D. Farmer (1992),
``Using surrogate data to detect nonlinearity in time series''
in: Nonlinear Modeling and Forecasting, eds. M. Casdagli
and S. Eubank, SFI Studies in the Sciences of Complexity,
Vol.XII (Reading, MA,Addison-Wesley), pp.163-188.
Theiler, J., S. Eubank, A. Longtin, B. Galdrikian,
J.D. Farmer (1992),
``Testing for nonlinearity in time series: the method
of surrogate data'',
Physica D, 58, pp.77-94.
Provenzale, A., L.A. Smith, R. Vio, G. Murante (1992),
``Distiguishing between low-dimensional dynamics
and randomness in measured time series'',
Physica D, 58, pp.31-49.
Rapp, P.E., A.M. Albano, I.D. Zimmerman,
M.A. Jiménez-Moltaño (1994),
``Phase-randomized surrogates can produce spurious
identifications of non-random structure'',
Phys. Lett. A, 192, pp.27-33.
Aguirre, L.A., S.A. Billings (1995),
``Identification of models for chaotic systems from noisy data:
implications for performance and nonlinear filtering'',
Physica D, 85, pp. 239-258.
Benettin, G., L. Galgani, A. Giorgilli, J.-M. Strelcyn (1980),
``Lyapunov characteristic exponents for smooth dynamical
systems and for hamiltonian systems; a method for
computing all of them. Part II: Numerical application ''
Meccanica, 15, pp.21-30.
Zeng, X., R. Eykholt, R.A. Pielke (1991),
``Estimating the Lyapunov-exponent spectrum from short time
series of low precision'',
Phys. Rev. Lett., 66, pp.3229-3232.
Zeng, X., R.A. Pielke, R. Eykholt (1992),
``Extracting Lyapunov exponents from short time series of
low precision'',
Modern Phys. Lett. B, 6, pp.55-75.
Kruel, Th.M., M. Eiswirth, F.W. Schneider (1993),
``Computation of Lyapunov spectra:
Effect of interactive noise and application to
a chemical oscillator'',
Physica D, 63, pp.117-137.
Brown, R., P. Bryant, H.D.I. Abarbanel (1991),
``Computing the Lyapunov spectrum of a dynamical system
from an observed time series'',
Phys. Rev. A, 43, pp.2787-2806.
Abarbanel, H.D.I., R. Brown, M.B. Kennel (1991),
``Lyapunov exponents in chaotic systems: their importance
and their evaluation using observed data'',
Int. J. Mod. Phys. B, 5, pp.1347-1375.
Holzfuss, J, U. Parlitz (1991),
``Lyapunov exponents from time series'',
Proceedings of the Conference Lyapunov Exponents,
Oberwolfach 1990, eds. L. Arnold, H. Crauel, J.-P. Eckmann, in:
Lecture Notes in Mathematics, Springer Verlag.
Kadtke, J.B., J. Brush, J. Holzfuss (1993),
``Global dynamical equations and Lyapunov exponents from
noisy chaotic time series'',
Int. J. Bifurcation Chaos, 3, pp.607-616.
Eckmann, J.-P., D. Ruelle (1992),
``Fundamental limitations for estimating dimensions and
Lyapunov exponents in dynamical systems'',
Physica D, 56, pp.185-187.
Ellner, S., A.R. Gallant, D. McCaffrey, D. Nychka (1991),
``Convergence rates and data requirements for Jacobian-based
estimates of Lyapunov exponents from data'',
Phys. Lett. A, 153,pp.357-363.
Fell, J., J. Röschke, P. Beckmann (1993),
``Deterministic chaos and the first positive Lyapunov exponent:
a nonlinear analysis of the human electroencephalogram
during sleep'',
Biol. Cybern., 69, pp.139-146.
Fell, J., P. Beckmann (1994),
``Resonance-like phenomena in Lyapunov calculations
from data reconstructed by the time-delay method''
Phys. Lett. A, 190, pp.172-176.
Sato, S., M. Sano, Y. Sawada (1987),
``Practical methods of measuring the generalized dimension
and largest Lyapunov exponent in high dimensional chaotic
systems'', Prog. Theor. Phys., 77, pp.1-5.
Rosenstein, M.T., J.J. Collins, C.J. de Luca (1993),
``A practical method for calculating largest Lyapunov
exponents from small data sets'',
Physica D, 65, pp.117.
Singer, W. (1993),
``Synchronization of cortical activity and its putative
role in information processing and learning,''
Annu. Rev. Physiol., 55, pp.349-374.
Kocarev. L., U. Parlitz (1995),
``General approach for chaotic synchronization with
applications to communication'',
Phys. Rev. Lett., 74(25), pp.5028-5031.
Parlitz, U., L. Junge, L. Kocarev (1997),
``Subharmonic entrainment of unstable period orbits
and generalized synchronization'',
Phys.Rev.Lett., 79(17), pp.3158.
Rico-Martinez, R., K. Krischer, I.G. Kevrekidis,
M.C. Kube, J.L. Hudson, (1992),
``Discrete - vs. continuous-time nonlinear signal
processing of Cu electrodissolution data,''
Chem. Eng. Comm. 118, pp.25-48.
Parlitz, U. & G. Mayer-Kress (1995),
``Predicting low-dimensional spatiotemporal dynamics
using discrete wavelet transforms'',
Phys. Rev. E, 51(4), pp.R2709-R2711.
S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman and A. Wu
An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions,,
(Proc. of the Fifth Annual ACM-SIAM Symp. on Discrete Algorithms, 1994, pp. 573-582)
A. Belussi and C. Faloutsos
Estimating the Selectivity of Spatial Queries Using the `Correlation' Fractal Dimension,
(Conference Proceedings of VLDB, Zurich, Switzerland, Sept. 1995, pp. 299-310)
S. Berchtold, C. Böhm, D.A. Keim and H.P. Kriegl A cost
model for nearest neighbor search in high-dimensional data
space,
(PODS'97, Tuscon, AZ, pp. 78-86)
P. Grassberger, R. Hegger, H. Kantz, C. Schaffrath and T. Schreiber
On noise reduction methods for chaotic data,
(Chaos, Vol. 3, Nr. 2, 1993, pp. 127-141)
T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, and B.I. Shraiman
Fractal measures and their singularities: The characterization of strange sets,
(Phys. Rev. A Vol. 33, Nr. 2, 1986, pp. 1141-1151)
J. McNames
A Nearest Trajectory Strategy for Time Series Prediction,
(Proc. of the International Workshop on Advanced Black-box Techniques for Nonlinear Modeling, 1998, pp. 112-128)
U. Parlitz
Nonlinear Time-Series Analysis,
in (Nonlinear Modeling - Advanced Black-Box Techniques Eds. J.A.K. Suykens and J. Vandewalle
Kluwer Academic Publishers, 1998, pp. 209-239)
V. Pestov
On the geometry of similarity search : dimensionality curse and contraction of measure,,
(Maths and comp. science research report, 99-02, VUW, January 1999, pp. 7), submitted for publication